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First-principles molecular dynamics of liquid alkali metals
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A first-principles molecular dynamid®1D) scheme is presented on the basis of the density-functi@al
theory with use of the the quantal hypernetted ci®RNC) approximation. The DF theory brings about exact
expressions for the ion-electron and ion-ion radial distribution functi®@¥) of an electron-ion mixture as a
model of a simple liquid metal. These exact expressions prove that an ion-electron mixture can be treated as a
one-component liquid interacting only viapairwise interaction in the evaluation of the ion-ion RDF, and
provide a set of integral equations: one is an exact integral equation for the ion-ion RDF and another for an
effective ion-ion interaction, which depends on the ion configuration specified by the ion-ion RDF. Hence,
after some approximations are introduced, the MD simulation can be performed to get the ion-ion RDF using
the ion-ion interaction determined so as to be consistent to the ion-ion RDF: the MD simulation and the
procedure to determine the effective interaction from the QHNC equation are performed iteratively. This MD
simulation coupled with the QHNC equatid@HNC-MD method for the effective interaction provides a
first-principles calculation of structures of simple liquid metal: the ion-ion and electron-ion RDF'’s, the charge
distributions of an ion and a pseudoatom, the effective ion-ion interaction and the ion-ion bridge function are
evaluated in a self-consistent manner from the atomic number as the only input. We have applied this
QHNC-MD method to Li, Na, K, Rb, and Cs near the melting temperature using up to 16 000 particles for the
MD simulation. It is found that the convergence of the effective ion-ion interaction is fast enough for practical
application to alkali metals; two MD runs are enough for convergence within accuracy of 3 to 4 digits, if the
initial effective potential is properly set up. The structure factors, thus obtained, show excellent agreement with
the experimental data observed by x-ray and/or neutron scatt¢8h§63-651X%96)04606-5

PACS numbgs): 61.25.Mv, 61.20.Gy, 61.20.Ja, 71.23.An

[. INTRODUCTION electron-ion interaction is described by a pseudopotential to
produce pseudo-wave functions which can be accurately rep-
The liquid alkali metals have been studied extensively inresented by a small number of plain waves. The CP-MD
both experimental and theoretical sides. They can be easiljethod possesses an advantage to avoid the difficult task of
used to test a theoretical approach as the first step, since thegnstructing an effective ion-ion potential required to per-
constitute “simple” metals and “simple” liquids: further- form the molecular-dynamics simulation, and proviges
more, there exist many reliable experimental results to bénitio calculations of the metallic systems in principle. How-
compared. In the standard theory, a liquid metal is treated asver the most serious problem in this approach is that the
a one-component liquid interacting via a binary effective po-number of particles used in the simulations cannot be taken
tential, which is determined by the pseudopotential formaldarge and a total of time steps performed in the simulations is
ism; a pseudopotential is introduced either by first-principledimited to a small size within the present computational re-
calculations or by adjusting parameters involved in modekources. The CP-MD method treats exactly the kinetic-
potentials to some experimental results. In this treatment, thenergy functionall[n] in the density-functional theory. If
ionic structures are determined independently of the electhis kinetic-energy functional is approximated in terms of the
tronic structures in a liquid metal. electron densityn(r) (and its gradient the computing cost
It is only recently that a liquid metal is thought of as an can be reduced significantly as shown by several authors
electron-ion mixture and the ionic structures are determine@2,3]. When we can find a reliable approximation to the
in a coupled manner with the electronic structures. One suckinetic-energy functional, this approach may become a pow-
approach is the Car-Parrinello molecular-dynant@B-MD) erful alternative to the CP-MD method.
technique[1], where a liquid metal is taken as a binary mix- At a cost of much computational time, the CP-MD
ture of ions and electrons. In the CP-MD method, themethod can introduce many-body interactions between ions
and treat dynamical behaviors of ions under these interac-
tions, many-body correlations, and clustering of ions con-

“Deceased. taining fluctuations. When we limit ourself to investigate the
TAuthor to whom correspondence should be addressed. Electronjaroblem determining the radial distribution function of a lig-
address: chihara@c3004.tokai.jaeri.go.jp uid metal, another scheme dirst-principles molecular-
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dynamics simulation is proposed based on the densitytion electrons; the interactions;;(r) between particles
functional (DF) method applied to the ion-electron mixture. [i,j=I or €] are taken as pairwise. The ions constitute a
This simulation method can be performed on a large numbeglassical fluid, while the conduction electrons form a quan-
of particles to last a large size of time steps, since thisum fluid. Let us refer to this mixture as the ion-electron
scheme reduces the electron-ion problem to the usual classiodel for a liquid metal. Since the ions are regarded as clas-
cal MD coupled with a set of integral equations determiningsjcal particles in the electron-ion model, the ion-ion and
an effective ion-ion interaction: it is a problem to determineg|ectron-ion RDF’s become identical with the ion- and
the ion-configuration structure and the ion-ion interaction i”electron-density distributions around a fixed ion in the mix-

a self-consistent manner. ture, respectively{5]. Because a fixed ion causes external

Previously, we have proposed a set of integral equat'onBotentials acting on ions and electrons in the homogeneous

for radial distribution functionsRDF) in an electron-ion . . .
mixture on the basis of the DF theory in the quantal hyper_'m|xture, the DF theory can give the exact expressions for the

netted(QHNC) approximation(4,5]. In this QHNC formal- O and electron-densny d|str|b.ut|on|s,(r||) andng(r|l),
ism, the bare electron-ion interactian,(r) and the ionic N terms of those of noninteracting systenf§r) under ef-
chargez, are determined self-consistently by regarding a lig-fective external potentialgi™(r) [i =, e

uid metal as a mixture of nuclei and electrd63. Already,

we have applied this approach to liquid metallic hydrogen
[4], lithium [7], sodium[8], potassium[9], and aluminum
[10] obtaining ion-ion structure factors in excellent agree-
ment with the experiments. The QHNC equations are derivedjith the use ofF,, and M:m, the interaction part of the
from exact expressions for the electron-ion and ion-ionintrinsic free energy and the chemical potential, respectively
RDF's in an electron-ion mixture: these exact expressions1 1], As a result, the DF theory provides exact, but formal,

are only the formal results derived from_ the DF theory. Aexpressions for the ion-ion RO (r) and electron-ion RDF
molecular-dynamics scheme to treat an ion-electron m|xtur§1 (r) as follows:
o :

can be set up on the basis of these exact relations, whic
state; that the electro_n-lqn_m|xtur§ can bg rggqrded as a n!)g“(r):n|(r|I)=n?(rIUF“)Eni)exr[—,BU,eﬁ(r)], ?)
guasi-one-component liquid interacting vigairwise inter-

5}—int int (1)

eff — —
Ui (r)=v;(r)+ sm(r|h M

action in the description of the ion-ion ROB] (hereafter, | (1)]2
referred to as the QHNC-MD methpdSince the QHNC ngge,(r)=ne(r|l)=n2(r|U§ﬁ)Ez - ,
formalism is derived on the electron-ion model where the T exd B(ei—pno)]+1
bound electrons forming an ion in a liquid metal is assumed ()

to be clearly distinguished from the conduction electrons and e . . . .
the overlap of the core electrons is negligible, thewhere,uO denoltes ghe_ chemical potential (?f a nqmnteractmg
QHNC-MD method is only applicable to simple liquid met- €/€ctron gasng (ng) is lthe number density of ionéelec-
als: its application to liquid alkali metals is taken as an idealffons, and B=(kgT)"" the inverse temperature. The
test of the QHNC-MD method. Thus the QHNC-MD method electron-density distribution%(r|U) is determined by solv-
has been shown to yield structure factors of liquid alkaliing the wave equation for an electron under the external po-
metals in excellent agreement with experiments as the resuential U(r)
of a first-principles calculation in the present work. ) )

In Sec. I, we sketch the QHNC formulation: exact ex- [ (A512m)V=+U(r) 1¢i(r) =& 4i(r). (4)
pressions for RDF’s in an electron-ion mixture are obtained o . . .
from the DF method12], and the nucleus-electron model is Ina s]mllar way to the case ofﬁclas&_cal binary mixtures, the
shown to provide a bare electron-ion interaction, whichefféctive external potential&)(r) given by Eq.(1) are
should be determined self-consistently. The procedure t¥/ftten as
perform the MD simulation based on the QHNC theory is

ff _ _ _
shown in Sec. IIl: in the QHNC formulation the effective UF(r)=vi(r) =T (r)/ B=B;(r)/ B, ®)
ion-ion interaction used in the MD simulation depends on the
ionic structure specified by the ion-ion RDF. Therefore in the e J iy —rr Al _ ,
application of this MD scheme it is important to extrapolate F"(r)_E, Ci([r=r"nglgn(r)—11dr’, (6

the MD RDF beyond the truncation radius of the simulation

correctly so as to be used in the determination of an effectivén terms of the direct correlation functio®®CF) C;;(r) and
ion-ion interaction; this is exemplified by the method de-the bridge functionss;(r). Here, the DCF'sC;(r) in the
scribed in Sec. Ill. Numerical procedure of the QHNC-MD jon-electron mixture are defined within the framework of the
method and the results of its application to alkali liquid met-DF theory by

als are described in Sec. IV. The last section is devoted to a

discussion, where the advantages and disadvantages of the . S Find Ny Nl
QHNC-MD method against the CP-MD method are also ar- Cilr=r'D==Bs—snr @
o m(r)on; (1),

where the suffix 0 denotes the functional derivative at the
uniform densitied11]. Actually the explicit expression for

A simple liquid metal can be thought of as a binary mix- the DCF’s are given by the Fourier transform in the matrix
ture of ions with a definite ionic chargg and the conduc- form

Il. QUANTAL HYPERNETTED CHAIN THEORY
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JNC(K)JN= (;Q)*l_(}Q)*l (8) nte’(r| N) should be taken to be identical with the electron
distributionpy(r) of an ion in the reference system, since the
in terms of the density-response functig?@z”xij(k)H and ion formed around the central nucleus is necessary to be the
same structure as any ion in the system. Thus we obtain a
self-consistent condition to determine the distributjgyr)
in the premise:

}%EHXOi(Q) 8|l of the interacting and noninteracting sys-
tems, respectively, witth'=||ny ;|| [11]. Note here that the
density-density response functiogs(Q) concerning ion re-
duced to the structure facto® (Q) and x°'(Q)=1, since pu(1)=nB(rN)=n(r) (13)
the ions behave as classical partidlgs From this definition b © e

of the DCF’s the Ornstein-Zernike relations are derived forwith the bound-electron numbeZg= [py(r)dr. On the
the ion-electron mixture other hand, the free-electron parf(r| N) in Eq. (12) is
taken as the electron-ion RDi5g,(r) of the electron-ion

—-1= +T . . .
9u(r) Cu(r)+Lu(r), © ixture with the free-electron density$=2,n},, and the
_1-B BT _ 1 nuclgus—nucleus RDF becomes the ion-ion Rj?ﬁr).'
Ger(r) Cerlr) el (10 With use of this reference system, we can obtain a trac-
HereB denotes an operator defined by table expression ofSf(r) for the wave equation to deter-

mine ng(r|N) by introducing some approximations to the

A 0 0 ) exchange-correlation term involved in[&]:
FalBU()]1= () Fol 1(11=(x§)” [ exdiQ-1frdr,

- 1
(1) vED=Tei(1) = 53 fce.<|r—r'|>n5[g.|(r’>—1]dr',

for an arbitrary real numbe#, and represents a quantum (14)
effect of the electron through the density-response function
X% of the noninteracting electron gas. where uyc(n) is the exchange-correlation potential in the

A set of integral Eqs(2) and (3) are exact but formal Io'caljdensity approximgtiomLDA). Note th.at thi; expres-
expressions, as well as all other equations in the aboveion is equal to Eq(5) without the electron-ion bridge func-
However, the ionic chargg and the electron-ion interaction tions Be(r) except that the bare electron-ion interaction is
ve (r) must be given beforehand, when we apply these forexplicitly given by
mulas to a liquid metal as an ion-electron mixture. In order

. .. . . . . . Z e2

to determine these quantities from first principle, a liquid ~ __&A IEPTIINN  PErra
. velr)= + Uee(|r r |)ne(r )dr

metal must be treated more fundamentally as a mixture of r

nuclei and electrongthe nucleus-electron modelwhere all b

i i i i + pxc(ne(r)+ng) — pxc(ng)

interactions between particles are known as pure Coulombic. XCl'le 0 xcito/

In this model, input data in dealing with a liquid metal is

only the atomic numbeZ, to specify the material. For this

(15

In this way, the treatment of a liquid metal as a nucleus-ion
X SH . mixture is shown to provide the ion-electron model, where
purpose, let us consider a liquid metal as a mixtureNpf

. the bare electron-ion interactian,(r) and the ionic struc-
nuclei andZ,N, electrons, and solve the problem to deter- ure py(r) can be determined in a self-consistent manner
mine the electron-density distribution around a nucleus fixecﬁ Po :

L : ' With the help of the result from the nucleus-electron
at the origin in this mixture. Since a fixed nucleus causes an . . )
. - 2 o model, we can derive a closed set of integral equations for
external potentialJ(r)=—2Z,e/r for this mixture to pro-

the ion-electron mixture, if we introduce the following ap-

dgce an mhomogeneous system, thg DF theory can be 3Broximations:(A) the electron-ion bridge function in Eq.
plied to this problem. It should be noticed that the DF theor 21) is neglectedB,,(r) =0, (B) the electron-electron DCF
contains some arbitrariness in the choice of a reference sys: . el '

«d(r) is approximated5] as

tem to describe the systdrhl]. We can get a simple descrip-
tion of the nucleus-electron mixture if the reference system is C __ 1—Glel 16
chosen to be a mixture consisting & —1 noninteracting ed Q)= ~Aued QI Q] (16

ions andZ, (N, — 1)+ Z, noninteracting electrons: here, each ysing the local-field correctiofLFC) G*'(Q) of the jellium

ion is assumed to havég bound electrons with a charge model for an electron gagC) the bare ion-ion potential
distribution pp(r) around it and an ionic charge v, (r) is taken as pure Coulombic, i.e, (r)=(Ze)%r,
Z=Zp—Zg. With use of this reference system, the DF and (D) the bare electron-ion potential is given by
theory can provide an effective external potentigi(r) for ve|(r)=0e(r) of Eg. (15). We have called this set of equa-
electrons around the fixed nucleus. Then, the electrontions the quantal hypernetted chain equations because of the
density distributiom(r|N) around the fixed nucleus is ob- approximationB,(r)=0 in Eq. (5).

tained by solving the wave equation f@f{,(r) in the sum of

the bound- and free-electron parts lIl. MOLECULAR DYNAMICS SIMULATION BASED
ON QUANTAL HYPERNETTED CHAIN THEORY
Ne(r|N)=nZ(r|v &™) =nS(r|N)+nf(r|N). (12)

It is important to realize that the electron-ion model leads
Hence the bound-electron distributimﬁ(r|N) thus deter- to the neutral-fluid model, where the ionic behavior of a
mined constitutes the definition of the “ion” in the electron- liquid metal is taken to be the same as a neutral one-
ion model. Furthermore, this bound-electron distributioncomponent fluid interacting via a binary effective interaction
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in treating the ion-ion RDF. This neutral-fluid model is de-
rived from the electron-ion model, when an effective ion-ion ‘
potential is defined in such a way that the RDF of a one- ! refinement

component fluid should become identical wigh(r) of the S

¥ - . (initial potential v.4(r) )
electron-ion mixture: T ——_l
g(r)=exd —Bves(r)+IL(N)+B(r)]=g,(r), 17 calc. g, (r) byVMHNC) ( calc. g, (r) by MD

Y
with use of the Ornstein-Zernike relation for a neutral one- Galc. V(1) by QHNC) Q:alc. V(1) by QHNC)
component fluid )

no yes
Tiff. in vq(r) small?
g(r)—1=C(r)+TI(r). (18
yes
—_—
In the above, the DCF for the one-component fluid is preparation
defined by niC(Q)=1-S,(Q)"* and I(r) ~ o
= —r! | ry !
_IC(“ r |)n0[g(r )—1]dr'. FIG. 1. Flow chart of the QHNC-MD method. The initial po-

Thus we can write the explicit expression for the effective
ion-ion potential of a liquid metal in the neutral-fluid model
as

tentialv(r) is determined by approximating, (r) in Eq. (21) by
the step functiord(r —a) with the ion-sphere radiua.

C 2.e. 0 one-component fluid can be solved by performing the clas-
_ M (19 sical MD simulation for thisv.(r) to produce new ion-ion

1-nGCed QX0 RDF g,,(r); this is used again in E¢21) to determine a new
] ) ) estimation forv¢(r). This process will be continued until
by taking the bridge functiorB(r) to be By (r) of the  convergence of the effective ion-ion potential is achieved
electron-ion mixture. Equatiofl9) can be interpreted within (e refer to this procedure as the QHNC-MD methddow-
the scope of the standard pseudopotential theory by regardver such a straightforward repetition of the MD simulation
ing C¢,(r) as the pseudopotentialy(Q) = —C¢ (Q)/B. I {0 solve the QHNC equations is not practical in the view-
this way, the ion-electron model is reduced exactly to theypint of the computational cost. Since the dependence of the
(19), in which the many-body forces are taken into accounis rather weak in a simple metal as we have showfLj,
in the form of the linear response expressi@f), since the e can adopt an approximate theory ®(r) in Eqg. (20) to
nonlinear effect in the electron screening is involved in termgyet an initial v o¢(r) for the QHNC-MD method. For this
of the electron-ion DCF, which plays the role of a nonlinearpurpose, we take the variational modified HN@VHNC)
pseudopotential. _ equation proposed by Rosenfdlti3], in which the bridge

By noting the above relation€l?7) — (19), the exact ex-  fynction is approximated bBpy(r;7) of the Percus-Yevick
pressiong?2) — (10) for the electron-ion model can be trans- equation for hard spheres of diameterwith the packing
formed into a set of integral equations: one is the integrat.;ction n=mnha®/6. In the VMHNC equation, the adjust-

equatipn for a one-component fluid with the effective ion-ionable parameter, is determined by the following condition:
potentialv ¢(r)

Brer( Q)= Bv(Q)

1 IBpy(T; 272
C(r)=exd — Bves(r)+I(r)+B(r)]—1-I'(r), (20 Enlof[g(r)_gPY(r;ﬂ)] p;(r n)dr+(1 7 )320,
Y -n
and the other an equation for the effective ion-ion interaction (22

veri(r), that is expressed in the form of an integral equation ] o
for the electron-ion DCRC,(r) wheregpy(r; 77) is the RDF for the hard-sphere fluid with the

Percus-Yevick equation. Thus, in a similar way to the
éCe|(r)=ng(r|ve|—Te|/B—Be|/,3)/”8—1—|§re|(f), QHNC-MD method, the integral equatid20) in the VM-
(2D HNC approximation is solved in a coupled manner with Eq.
(21) producing an effective ion-ion interactidreferred to as
since the effective interactiongs(r) is given in terms of the QHNC-VM method Furthermore, an initial potential
Ce(r) by Eqg. (19). In contrast with the usual effective po- ves(r) to this QHNC-VM method can be obtained by ap-
tential in the pseudopotential theory, the effective potentiaproximating g, (r) in Eg. (21) by the step function
(19 depends on the ion configuration represented by the(r —a) with the ion-sphere radius= (47ny/3) 3. When
ion-ion RDF g, (r) through the term: [g(r)  this finalveg(r) from the QHNC-VM method is used as an
=3,/ Ce(|r—r'])ni[gy(r)—1]dr’ in Eq. (21). input to the QHNC-MD method, the convergent result can be
Under the assumption@®) — (D) mentioned before, the obtained by a few repetitions of the MD simulation. Finally
QHNC Egs.(20) and(21) enables us to perform ab initioc  our procedure to solve the QHNC equation with the MD
molecular-dynamic§MD) simulation which requires only simulation (the QHNC-MD methodl is summarized as the
the atomic numbeZ, and thermodynamic states as inputflow chart shown in Fig. 1. For an initial potential(r)
parameter, in principle. The first estimation fo(r) canbe given by the approximation g,(r)=6(r—a), the
obtained with the use o€ (r) evaluated by Eq(21) with QHNC-VM method in thepreparation phaseields a good
an initial guess fog, (r). Next, an integral Eq(20) for a initial guess for the QHNC-MD method. Then the MD simu-
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lation is repeatedly performed to achieve convergence of TABLE I. Parameters used in the present QHNC-MD simula-
ver(r) in the refinement phase tions for liquid alkali metalsa=(4mny/3)” Y is the ion-sphere
There are two important points to be noticed regarding théadius;T"= Be*/a andr = (4mng/3)~ ' are the plasma parameter
MD simulation when applied to the QHNC-MD method. and the electron-sphere radius in units of the Bohr radjisre-
One is that the computer simulation provides the Ri§F) spectively R.; andR., are the cutoff length of the effective ion-ion
only within the half of the side length of the simulation potential vg(r) in the MD simul'ation for the first MD run and
cell. This causes an unavoidable truncation error in the ca§econd MD runisee texi, respectively.
culation of the Fourier transforifig[g(r) —1] to be used in

the evaluation of Eq€19) and(21). The second point is that Element T(K) T rs At Ru(a) Re(a)

the MD simulation is performed inevitably on a truncated; 470 203.1 3.308 0.940 5.88 5.88
potential for a liquid metal whose effective ion-ion potential Ng 373 2091 4.046 2.349 7.06 7.06
is accompanied by a long-ranged oscillatory tail: the com« 338 1859 5024 3.996 6.76 6.76
puter simulation may yield different RDF's depending on thegy, 313 1872 5388 6585  6.81 6.80
cutoff radiusR, of the potential. Recently we have proposed ¢ 303 180.3 5.781 8.954 6.83 6.84

a precise procedurd 2] to improve these two defects at the
same time and to get the RDF in the whole range of distance

for the full potentialveu(r). This method can be applied Table I; the temperature and density have been chosen to be
even to thesmall-sizesimulation result for the truncated po- compared with the experimental data[it6—20. Here, the

tential uc(r): temperature and density of alkali liquids are specified by two
dimensionless parameters: the plasma paranitteBe?®/a
! :[Ueff(r)_veff( Re) for r<R. 23 andr =alag in units of the Bohr radiusg, with the aver-
70 for r=R.. age ion-sphere radius

In our application of the QHNC-MD simulation to the
As the first step of this procedure, we extract the bridgealkali liquids, the local-field correction of the jellium model
function from the raw MD RDF data. For this purpose, wein Eq. (16) is chosen to be that proposed by Geldart and
extend the the raw RDF data of the MD simulation Vosko[26], since it has a simple structure and gives a good
gwmp(r), by solving an integral Ed.14]. approximation. In Eq(15), the expression given by Gun-
narsson and LundqvigR7] is adopted as the LDA for the
exchange-correlation potentiglc(n).

After the preparation of initial effective potential by the
QHNC-VM method, two iterations in the refinement phase
coupled with the Ornstein-Zernike relation, whd®eis the  of the QHNC-MD methodFig. 1) are sufficient to obtain a
extrapolating distanceR<<L/2). At this stage, in order to convergent solution for alkali liquid metals; 16 000 patrticles
obtain a reliable bridge function, it is essential to ték@s have been used in the first MD ryRun-1) and 4 000 par-
short as about 3 to 4 interatomic spacings or simply asicles for the second MD ruRun-2. The MD simulation
R=R . [12] and to discard the RDF data outside the distancéhas been performed over 50 000 time steps for Run-1 and
R so as to reduce the statistical noise contained in the ra@00 000 time steps for Run-2 with the cubic periodic bound-
RDF data. Using the extendegir), the bridge function ary conditions; the temperature of the system is kept constant
Bup(r) can be extracted for distances whegy(r) #0 by by the isokinetic constraii22]. The equations of motion are

integrated by a fifth order differential algorithi3] with the
Buc(r)+Infgmp(r)]=T(r) for r<R g time incrementAt=0.002%" Y3(m, B) with the mass of an
0 for r=R. 25 ion m, : the corresponding real time is shown in Table I. In

each MD simulation of Run-1 and Run-2 for iterations, the
At the second step to get the RDF for the full potentialeffective potential is cut at the radil®, located at the node
ver(r), we solve the integral Eq20) for the full potential  of the Friedel oscillation of .«(r) as shown in Table 1. All
with use of thisByp(r) as an approximation to that of the MD simulations have been carried out on a vector-parallel
full potential: this can be justified by the fact that the bridgeprocessor Monte-424] at the Japan Atomic Energy Re-
function is not sensitive to the long-range part of the potensearch Institute. The computational time required for 10 000
tial and becomes very weak for the long-range distdft@¢  steps is about 30 to 50 hours for 16 000 particles including

the sampling of the RDF.

IV. APPLICATION TO LIQUID ALKALI METALS The integral Eq(24) has been solved by an iterative pro-
cedure introduced by N@25] to extend the raw MD data
gmp(r) to the wholer range: the extending distanBein this

Liquid alkali metals constitute “simple” metals in the procedure(24) is taken to beR; for the whole cases. The
sense that the bound electrons forming an ion are clearlpumber of grid points and step size used in numerical inte-
distinguished from the conduction electrons and the overlagrations are 1024 points ankt =0.025, respectively. Us-
of the core electrons are negligible; the approximati@gxls-  ing C(r) obtained by the HNC equation as an initial input
(D) used in the QHNC-MD method become quite good onegunction, it takes about 10 000 iterations to achieve conver-
for these metals. Therefore we have applied the QHNC-MDyence.
method for five liquid alkali metaléLi, Na, K, Rb, and Cs In order to examine both numerical and computational
near the melting point using the parameters specified iefficiency of the QHNC-MD method, we have tested the

Owp(r) for r<R

exd —Bug(r)+I(r)] for r=R, 29

g(r)E[

Bup(r)=

A. Numerical procedure of QHNC-MD method
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FIG. 2. The consistency measukg;(r) defined by Eq(26) for FIG. 3. Comparison of the raw MD RDF for liquid Li with the
liquid Li; dot-dashed curveAg(r); dashed curveAg,(r). Solid extended RDF: dashed curve is the raw RDF data; solid curve is the
curve is the final result for the ion-ion RDd, (r). extended RDF with the full potential by EO) with Byp(r); O is

the result from the VMHNC equation for the present self-consistent
convergence of the RDF by evaluating following consistencyPotential. L is the side length of the simulation cell;
measure fog(r): L/2=12.794=22.40 A in the MD simulation for liquid Li with
4 000 particles. The discrepancy between the raw data and extended
Agi(r)=gi(r)—g;_1(r), (26)  data becomes clear for=4a, i.e., after the second peak of RDF.
On the other hand, the extended RDF becomes identical to that of
Al (e 12 the VMHNC equation for =5a, i.e., after the third peak of RDF.
|Agi|E(T°f |Agi<r>|2r2dr) : 27
0 It is concluded that the convergence of the present
QHNC-MD simulation is well attained from both numerical
Hereg;(r) is g,,(r) obtained by theth MD simulation and and computational points of view, helped by a good initial
go(r) is that obtained by the final step of the preparationestimation from the VMHNC equation in the preparation
phase. Figure 2 shows the consistency mea&@eof the  phase; the extension procedure to obtain the full-range RDF
present QHNC-MD simulation for the case of liquid Li, for the uncut effective potential is also necessary to get the
yielding the values |Ag,|=1.53x10"! and |Ag,|] convergence.
=5.92x10 3. It is easily seen that the convergence of
0,/ (r) is very fast; the difference of, (r) between Run-1
and Run-2 is situated almost within the statistical error of the
sampling of the RDF in the MD simulation: this means ac- Following the procedure mentioned above, we obtain the
curacy of about 3 to 4 digits is already achieved in theeffective interatomic interaction, the ion-ion and electron-ion
QHNC-MD calculation of Run-1. In a consistent way to the RDF’s, the charge distributiop(r) of neutral pseudoatom,
convergence of the RDF, a good convergence of the effectivene bound-electron distributiom,(r) forming an ion and the
ion-ion potentialv .(r) is achieved in Run-1. Similar to the bridge functions for liquid alkali metals in a self-consistent
case of liquid Li, a good convergence@f(r) andvx(r) is  way from the atomic number as the only input. In the first
also achieved for other liquid metals. It should be noted thaplace, we show structure factors, the Fourier transform of the
the preparation phase of the QHNC-MD method largely enion-ion RDF'’s. It is important for a detail comparison with
hances the convergence wfy(r). the experiment to use the MD RDF corrected for a full po-
Concerning the treatment of the raw MD data for the ion-tential and extrapolated to a whole range of the distance in its
ion RDF, it should be emphasized that the extension procd-ourier transform.
dure[12] to obtain the RDF for the full potential applied to  Figure 4 exhibits the structure factors for liquid Li calcu-
the raw MD data is indispensable for the present calculationated by the QHNC-MD simulation in comparison with the
This situation is illustrated in Fig. 3, where the truncationexperimental resulf15]. It is clearly seen that the present
error in g, (r) due to the use of the cutoff potential in the result is in excellent agreement with the experiment, improv-
MD simulation is so large that the convergence of theing the detailed structure o, (Q) near its second peak
QHNC-MD method will not be attained with the raw RDF compared with the result of the VMHNC equatitthe final
data. In addition, the extended RDF for the full potential isresult of the preparation phgseThis improvement on
almost identical with the result of the VMHNC equation for S;(Q) by the refinement phase essentially relies on the de-
the same potentialFig. 3) for r=5a, i.e., after the third tailed oscillatory behavior of the bridge function extracted
peak of RDF. This suggests that the long-ranged Friedel ogrom the raw RDF of the MD simulation. The discrepancy in
cillation of v .(r) typically seen for liquid metals is essential the bridge function between the MD simulation and VM-
for the detailed structure of the RDF at long distances, and iHNC equation gives no serious effects on the first peak of
is necessary to include the information of the long-range parthe RDF. But details of the RDF for&2<r=<5a are rather
of ver(r) into gy (r) in order to obtain a self-consistent so- sensitive to the oscillation dB(r) in a similar way as dis-
lution of the effective ion-ion potential by the QHNC-MD cussed in[12]. Therefore the use of the extracted bridge
calculation. function By,p(r) to determine the corrected RDF is impor-

B. lon-ion and electron-ion radial distribution functions
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a Li (470K) | 3r Rb (313K)
—— QHNC-MD | _2r
ol . QHNC=VM g
g &
= 1
)
1+
0 4 8
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FIG. 4. The ion-ion static structure fact8y, (Q) for liquid Li: 5

solid curve, the QHNC-MD result; dotted curve, result of the final 1
step of the preparation phagine QHNC-VM result; O, experi-

mental result taken frorfil5]. The deviation of the VMHNC result 2
from the experiment is corrected by the QHNC-MD method. 2 Q (5‘—1) 4

tant in order to guarantee the correct behavior of the structure FiG. 6. The ion-ion static structure facto8g (Q) for liquid Rb
factor by the Fourier transform. The structure factors calcutthe uppey and Cs(the lowe): solid curve, the QHNC-MD result;
lated for Na and K are shown in Fig. 5 in comparison with dotted curve, the QHNC-MD resuthe final step of the preparation
the neutron and x-ray experimentss,17. The QHNC-MD  phasg O and®, the x-ray and neutron experimental results for Rb
structure factor of Na is in excellent agreement with thetaken from[20] and [18], respectively. Experiment result for Cs
x-ray result(full circles) showing a small deviation from the denoted byO is taken from[16].

neutron datdcircles at the first peak, while the curves of the ) .
QHNC-MD structure factor for K lies between the neutron2dreement with the neutron observation. On the other hand,

(circles and the x-ray(full circles) experimental results. th® QHNC-MD structure factor of Cs becomes higher in the
Also, the structure factors from the QHNC-MD method for fi'St peak than the experimefit6] and shows a small devia-

Rb and Cs are compared with the neutron and the x-ra on in the phas_e of the oscnlatlo_n of the strugture factor for
experiment§18—20 in Fig. 6. The first peak of the Rb struc- e largeQ region compared with the experiment. In our
ture factor observed by the neutron experim@all circles) ~ treatment, we solve the Scluiager equation to obtain the

[18] is shifted a little to the larg® side compared with that Pound-electron distribution and electron-ion RDF; the rela-
observed in the x-ray experimentcircles [20]; the t|V|st_|c_ ef_fect is not taken |nt(_) account. In the case of Cs, the
QHNC-MD result has the same first-peak position to therelativistic effect may contribute to the calculation of the

x-ray data with a little different height and shows overall Structure factor, since its atomic numb&g=>55 is rather
large; there is a possibility that this effect may be ascribed to

this small discrepancy between the calculated and experi-
mental results in the Cs structure factor. In the same way as
shown in the Li structure factor, the QHNC-VM structure
factors deviate from the QHNC-MD results near the their
second peak for Na, K, Rb, and Cs as seen Figs. 5 and 6.
This second-peak difference between the QHNC-MD and
QHNC-VM structure factors brings about a distinct differ-
ence in the RDF’s obtained from their Fourier transform, as
can be seen from an example of Na shown in Fig. 7. Thus the
RDF from the VMHNC equation is found to be not so exact
as to compare with the details of the experimental results for
alkali liquids; the QHNC-MD method is shown to produce
reliable results for all alkali liquids.

Next, we proceed to discuss the electronic structure
around ion. The electron-ion RDF's from the QHNC-MD
method are shown in Fig. 8 for the case of Rb at temperature
313 K together with the ion-ion RDF. The electron-ion struc-
0 5 ) : 5 ture factorS,(Q) is represented in the forfa]:

QA
p(Q)
Sel(Q)= —=3S1(Q), (28)
| \/Z—| SII

3r A Na (373K) T

Si(Q)

Sn(Q)

FIG. 5. The ion-ion static structure factdsg (Q) for liquid Na
(the upper and K (the lowe): solid curve, the QHNC-MD result;
dotted curve, the QHNC-VM resultD and @, the neutron and in terms of the ion-ion structure factor and the charge distri-
x-ray experiments taken frofii6] and[17], respectively. bution of the pseudoatom:
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Rb (313K) |
N o metal

0 5¢(r) free—atom
. ppseud(r)

—— QHNC-MD 2
er —== QHNC-VM
Experiment

au(r)

o
-
N

r ()
FIG. 7. The ion-ion radial distribution functiamy,(r) for liquid ~ F!G- 9. The electron charge distribution of a pseudoatom in

Na: solid curve, the QHNC-MD result; dotted curve, the liquid Rb: solid curve, the QHNC-MD result; dashed curve, the

QHNC-VM result: @ experimental result taken frofi21]. The  charge distribution of the $electrons in a free Rb aton®, the

VMHNC approximation brings about small errors in the amplitude pseudopotential result with use of the Ashcroft model potential.

and phase compared with the experimental RDF. coincident with those that appeared in the &ectron charge

. 0 distributionps¢(r) in a free atom; these dips in the electron-

”oCe|(Q)XQ 29 ion RDF reflect the inner structure of an ion in a metal. The
1_n8Cee(Q)XOQ. (29 electron-ion RDF’s of liquid alkali metaléLi, Na, K, Rb,
and C3 are shown in Fig. 10, where the inner-core structure
{F omitted near the origin in each curve. The dip in the
glectron-ion RDF becomes shallower and is shifted to the
right side indicating the growth of the core size, as the

electron-ion RDF by inserting it in(29) instead of : . i i
o . . atomic number increases from Na to Cs: the curve of Li
—Cq(r)/B; its result using the empty core radius 1.27 A . X
hows an exception to this tendency.

has no inner-core structure near the origin as is expected. il When the electron-ion RDF is determined by solving the

the QHNC-MD method, we need not introduce any pseud- tion for th i istent potenti V
ization in treating the core region. Therefore, the electron-iof'aV€ €quation for the seli-consistent poten al(r), we

RDF g¢(r) exhibits the inner-core structure similar to a free qbtam from Eq_.(21) th.e eIectror}-lon DCFCe(r), which
atom as is shown in Fig. 8 in contrast with the results of they'elds an effective ion-ion potentlaleﬁ(r) of Eq. (19). qu-
pseudopotential methadull circles). It is interesting to note  '€SPonding to each curves §(r) in Fig. 10, the effective
that the electron-ion RDF has an oscillation with an inversd®n-ion potentialveq(r) is determined for each element as
phase to that of the ion-ion RDF, since the electrons ar§OWn in Fig. 11. It should be emphasized that there are no
pushed away by an ion as a whole in the core region. Thanits f(_)r the scallr)g lengths and energies to effecfuve ion-ion
charge distributiom(r) of the pseudoatom in a liquid Rb has pc_)tent|als determlned by the QHNC-MD method in contrqst
a similar structure to the distributioms(r) of the 5s elec- with th'os.e obtained by using the Ashcroft mOdeI poten_tlal
trons in the free atomsee Fig. 9 therefore, the total [28]. Similarly, no scaling features are found in the effective

electron-density distribution,(r) + p(r) is almost the same '0N-10N potential obtained by the Dagens-Rasolt-Taylor

to that of a free atom as was indicated by Ziman. Also, noténethOd[zg]’ which can t_)e thought of as an ap_pro>_<imation t_o
y the QHNC formulation in the sense that the ion-ion RDF is

that the positions of the dips in the electron-ion RDF arethere replaced by the spherical vacancy in Et) [30].
Nevertheless, it is shown that for liquid alkali metals near the
melting point the ion-ion RDF's from the QHNC-MD

method can be scaled almost into one curve by taking the

average ion radiua in the units of length as indicated in Fig.

p(Q)=

With the help of the above equations, the pseudopotenti
method using the Ashcroft model potential can evaluate th

Jeilr)

FIG. 8. The electron-ion and ion-ion radial distribution func- [
tions for liquid Rb: solid curve, the QHNC-MD result; dotted Y L
curves, the QHNC-VM resul®, The electron-ion RDF derived by r/a
the use of the Ashcroft model potential. The electron-ion RDF has
an inverse phase to the ion-ion RDF in their oscillation around FIG. 10. The electron-ion RDF’s for liquid alkali metals: inner-
unity. core structures near the origin are omitted.
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method is shown to correct this deviation and to yield results
in excellent agreement with experiments in the whole range
of wave numbeR. Even in alkali metals, there is no scaling
unit of lengths and energies for the effective ion-ion poten-
tials ven(r) determined from the QHNC-MD method; each
potential is different from the other and reflects a difference
in the bound-electron structure of an ion in each metal. The
situation is different in the case of the effective potential
calculated by use of the Ashcroft pseudopotential, which
_ gives an almost single potential curve for all alkali liquids if
ra scaled with the proper unji28]. However, it is interesting to
note that the ion-ion RDF’s can be scaled by the uniapf
the average ion-sphere radius, which enables us to plot the
results in almost a single curve for alkali liquids, Na, K,
. . . Rb) near the melting point, except the case of Cs.
tlazl fggﬁlﬁg %Q’r thelssf[?it:t\gfes lel(r:ii)i[%ylf(l)éngnlg tphoein?e(gegl:?en In our QHNC-MD formulation, the exchange-correlation

' effect expressed by the LFG(Q) and the LDAuxc(n) are

the,:ﬁﬂ?!iﬁgérization of this section. we conclude that th introduced from outside the framework of our formulation:
' Shose of the jellium model, where the ion distribution is re-

present application of the QHNC-MD method to liquid alkali laced by the positive uniform background. The jellium

metals provides the ionic structures in excellent agreeme hodel gives a good description for the electrons in alkali

W|th the experiments Wlthln the computational .CapaC'tymetaIs; the present success of the QHNC-MD method de-
available at present, enabling us to handle a relatively large

ot : o . pends on this fact. In addition, the structure factors of alkali
system size in the MD simulation in contrast with the usual ; .
A : : : metals calculated by this method are almost independent of
ab initio simulation for the electron-ion mixture. So as to be . :
what kind of LFC to choose. However, it should be noted

consistent with the ionic structure specified by the ion-ion . .
) . that the LFC in the QHNC formulation should depend on the
RDF, the QHNC-MD method is shown to give the electron-ion configuration precisely, since it is defined for the

Ia?tgnlfzg dgilrferz)aetrrlgitCh;gﬁbiﬁmb(ur t)'ogf(;%eogguﬁzegg OC electron-electron DCF in the electron-ion mixture.
y Iy To compare the MD structure factors with experiments in

trons fo_rmlng anon in a liguid metal at the same t'm.e'detail, it is important to extrapolate the MD RDF to large
alterne_ltlvely this electronic struc'gure produces the I0N-10Mjistances and to correct errors caused by the cut effective
potentialveq(r) used for the MD simulation. ion-ion potential used in the MD simulation. Our extrapola-
tion method[12] is shown very efficient in dealing with the

V. DISCUSSION raw MD data for a liquid metal with an ion-ion potential
accompanied by a long-range Friedel oscillation; this ex-
érapolation method is indispensable to obtain a convergent
Solution in the QHNC-MD method. In order to obtain so
reliable a bridge function for the extrapolation of the MD

proven to yield a first-principles calculation. Our prGViOUSRDF it is necessary to get a reasonable statistical accurac
calculations with the VMHNC equation, which has been ' . y g. ! . y
for evaluation of the RDF; for this purpose, the MD simula-

used for input to the QHNC-MD method, generated the,. .
: : o tion must be performed for at least several thousand particles
structure factors with a small but systematic deviation from

, “adaking about 18 to 10 sampleq12].
experiments near the second peak. Now our QHNC MDt The Car-Parrinello MODICP-MD) method is based on the

same ground to the QHNC-MD method: the electron-ion
3 ' ' ' ' - mixture model for liquid metals and the jellium model for
; electrons, which are treated by the DF theory. Also, the bare
ion-ion interaction is taken as a pure Coulombic in both
treatments. However, in the CP-MD method, the bare
electron-ion interaction is approximated by a pseudopoten-
tial, which is introduced from outside of the CP-MD formu-
lation; this fact makes a contrast with our QHNC-MD
method where it is obtained self-consistently within the
_ , framework of the QHNC formulation and no pseudization is
Y 2 t/a 4 6 necessary in treating the core region. As a consequence, the
electron-ion RDF extracted from the CP-MD result does not
FIG. 12. The ion-ion RDF's for liquid alkali metals: The RDF's Nave an inner core structure. It should be emphasized that in
of Li, Na, K, and Rb are written almost in a single curve in the unitsthe QHNC formulation the inner electronic structure around
of length a, the ion-sphere radius. The RDF of Qthe dotted @ fixed nucleus, such as the electron-ion RDF in the core
curve shows a small deviation; the dashed curve: Li. The differ-region and the bound-electron distributing(r) of an ion in
ence among the results for Na, K, and Rb are indiscernible on thig liquid metal, is determined to be consistent with the outer
scale. structure, that is, with the surrounding ion and electron con-

FIG. 11. Effective ion-ion potentials for liquid alkali metals:
Scaling properties are not found in the alkali potentials.

We have shown that the QHNC-MD formulation provides
a very precise description of simple liquid metals at any stat
from the atomic numbeZ, as the only input: this method is

an(r)
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figurations. Therefore, the QHNC-MD method can be ap-the ionic structure becomes significantly so different from a
plied to a high density plasma, where a usual pseudopotentifiiee atom due to high compression that the usual pseudopo-
cannot be constructed due to the fact the atomic structure itential theory cannot be applied.
a highly compressed plasma state is quite different from that The QHNC-MD method is developed on the base of the
in the vacuum. When there is no core electrons in such as ian-electron model, where the bound electrons are assumed
hydrogen plasm&33], the CP-MD method can be applied to be clearly distinguished from the conduction electrons and
without any of the problems mentioned above, since thehe ions are so rigid and so small that the ion-ion bare inter-
electron-proton interaction is taken as the pure Coulombi@ction is taken as a pure Coulombig,(r)=(Ze)%/r.
potential. Therefore our method is applicable only to a simple metallic
While our methods treat the single-center problem to desystem. In a transition metal, for example, an “ion” cannot
termine the electron- and ion-density distributions around de clearly defined since the bound electrons are not distinct
fixed ion in a liquid metal, the CP-MD method treats elec-from the conduction electron, and the overlap of “ions” is
trons in the multicenter problem: the electron distribution issignificant: many-body interactions becomes important. Our
determined for the multi-ion configuration and the ions aremethod cannot be applied to such a case. Already, we have
considered to be interacting via the many-body forces in theproposed a method to treat nonsimple mefdlsthe RDF's,
CP-MD treatment. Therefore data of the CP-MD methodthe ionic charge, and the muffin-tin potential are determined
contains many-body correlations such as a three-body corréy solving a single-center problem with a bare ion-ion inter-
lation. On the other hand, the QHNC-MD simulation has aaction as an input, while the density of states, the bare ion-
ground to give only a pair correlation exactly: for example, aion interaction and the thermodynamic properties are to be
three-body correlation extracted the QHNC-MD simulationobtained as results of the multicenter problem with use of
has no assurance to be exact. Moreover, it should be noticezlitput from the single-center problem.
that an orbital of an ion determined by the QHNC-MD simu- The CP-MD method can produce the electron-ion RDF
lation may be taken as an average orbital in some sensand the electron-ion structur®,(Q) is obtained from its
compared with that determined by the CP-MD simulation:Fourier transform. Thus the charge distributiptQ) of a
there, many-body forces are changing at every time stemeutral pseudoatom can be calculated from ®§) even in
while the binary ion-ion interaction remains constant at evthe CP-MD simulation, since the relatiof28) between
ery time step in the QHNC-MD simulation. It is interesting p(Q) andS,,(Q) is exact if a liquid metal can be treated as
to investigate what difference can be seen between the dyrion-electron mixture. Also, the electron-ion DCE,(Q) is
namical structure factors obtained by these two methods. determined from Eq(29) to give an effective ion-ion inter-
However, it should be kept in mind that the electron-ionactionv (r) from Eq.(19); these guantities must be consis-
mixture can be taken exactly as a quasi-one-component sygent to the ion-ion structure facto®,(Q), if the LFC
tem interacting only via @airwiseinteraction in the evalu- G(Q) in the electron-electron DCE((r) is chosen exact
ation of thepair correlation for simple liquid metals. When one in the electron-ion mixture. In this connection, there is a
we focus on the calculation of the ion-ion and electron-ionpoint to notice regarding the CP-MD method that the
RDF’s, the advantage of the present method against thexchange-correlation effect of the valence electrons is treated
CP-MD method based on the usual pseudopotential theoryy the LDA approximation: the LF@G(Q) does not appear
can be summarized as follow&) The present procedure is in the CP-MD method. This consistency test in the CP-MD
capable of handling a large system sizel0® to 10" par-  method can be exemplified by applying it to liquid alkali
ticles) in the MD simulation within the computational re- metals, which are typical examples of the electron-ion
sources available at present, helped by the good initial guesgodel. At the same time, these quantities in the CP-MD
with the VMHNC approximation for solving the QHNC method can be compared with the results of the QHNC-MD

equation.(2) In the QHNC-MD method, the many-body method, both methods providing first-principles calculations.
forces and nonlinear effect in the electron screening are

taken into account automatically in the form of a pairwise
interaction in such a way that the nonlinear pseudopotential
is constructed in terms dE(r). (3) By setting up an addi- We would like to thank the Center of Promotion of Com-
tional integral equation fo€.(r), our method can treat the putational Science and Engineering of the Japan Atomic En-
case where the jellium model for the electrons in a metakrgy Research Institute for permitting us to use the compu-
breaks down, that is, where the exchange-correlation effet¢ational resources on the dedicated vector-parallel processor
begins to depend on the the ion configurafidh Therefore, Monte-4. This work was partially supported by thetErre-

(4) our method is applicable to high density plasmas wherachische Forschungsfonds under Project No. P8912-PHY.
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