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A first-principles molecular dynamics~MD! scheme is presented on the basis of the density-functional~DF!
theory with use of the the quantal hypernetted chain~QHNC! approximation. The DF theory brings about exact
expressions for the ion-electron and ion-ion radial distribution functions~RDF! of an electron-ion mixture as a
model of a simple liquid metal. These exact expressions prove that an ion-electron mixture can be treated as a
one-component liquid interacting only via apairwise interaction in the evaluation of the ion-ion RDF, and
provide a set of integral equations: one is an exact integral equation for the ion-ion RDF and another for an
effective ion-ion interaction, which depends on the ion configuration specified by the ion-ion RDF. Hence,
after some approximations are introduced, the MD simulation can be performed to get the ion-ion RDF using
the ion-ion interaction determined so as to be consistent to the ion-ion RDF: the MD simulation and the
procedure to determine the effective interaction from the QHNC equation are performed iteratively. This MD
simulation coupled with the QHNC equation~QHNC-MD method! for the effective interaction provides a
first-principles calculation of structures of simple liquid metal: the ion-ion and electron-ion RDF’s, the charge
distributions of an ion and a pseudoatom, the effective ion-ion interaction and the ion-ion bridge function are
evaluated in a self-consistent manner from the atomic number as the only input. We have applied this
QHNC-MD method to Li, Na, K, Rb, and Cs near the melting temperature using up to 16 000 particles for the
MD simulation. It is found that the convergence of the effective ion-ion interaction is fast enough for practical
application to alkali metals; two MD runs are enough for convergence within accuracy of 3 to 4 digits, if the
initial effective potential is properly set up. The structure factors, thus obtained, show excellent agreement with
the experimental data observed by x-ray and/or neutron scattering.@S1063-651X~96!04606-5#

PACS number~s!: 61.25.Mv, 61.20.Gy, 61.20.Ja, 71.23.An

I. INTRODUCTION

The liquid alkali metals have been studied extensively in
both experimental and theoretical sides. They can be easily
used to test a theoretical approach as the first step, since they
constitute ‘‘simple’’ metals and ‘‘simple’’ liquids: further-
more, there exist many reliable experimental results to be
compared. In the standard theory, a liquid metal is treated as
a one-component liquid interacting via a binary effective po-
tential, which is determined by the pseudopotential formal-
ism; a pseudopotential is introduced either by first-principles
calculations or by adjusting parameters involved in model
potentials to some experimental results. In this treatment, the
ionic structures are determined independently of the elec-
tronic structures in a liquid metal.

It is only recently that a liquid metal is thought of as an
electron-ion mixture and the ionic structures are determined
in a coupled manner with the electronic structures. One such
approach is the Car-Parrinello molecular-dynamics~CP-MD!
technique@1#, where a liquid metal is taken as a binary mix-
ture of ions and electrons. In the CP-MD method, the

electron-ion interaction is described by a pseudopotential to
produce pseudo-wave functions which can be accurately rep-
resented by a small number of plain waves. The CP-MD
method possesses an advantage to avoid the difficult task of
constructing an effective ion-ion potential required to per-
form the molecular-dynamics simulation, and providesab
initio calculations of the metallic systems in principle. How-
ever the most serious problem in this approach is that the
number of particles used in the simulations cannot be taken
large and a total of time steps performed in the simulations is
limited to a small size within the present computational re-
sources. The CP-MD method treats exactly the kinetic-
energy functionalTs@n# in the density-functional theory. If
this kinetic-energy functional is approximated in terms of the
electron densityn(r ) ~and its gradient!, the computing cost
can be reduced significantly as shown by several authors
@2,3#. When we can find a reliable approximation to the
kinetic-energy functional, this approach may become a pow-
erful alternative to the CP-MD method.

At a cost of much computational time, the CP-MD
method can introduce many-body interactions between ions
and treat dynamical behaviors of ions under these interac-
tions, many-body correlations, and clustering of ions con-
taining fluctuations. When we limit ourself to investigate the
problem determining the radial distribution function of a liq-
uid metal, another scheme offirst-principles molecular-
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dynamics simulation is proposed based on the density-
functional ~DF! method applied to the ion-electron mixture.
This simulation method can be performed on a large number
of particles to last a large size of time steps, since this
scheme reduces the electron-ion problem to the usual classi-
cal MD coupled with a set of integral equations determining
an effective ion-ion interaction: it is a problem to determine
the ion-configuration structure and the ion-ion interaction in
a self-consistent manner.

Previously, we have proposed a set of integral equations
for radial distribution functions~RDF! in an electron-ion
mixture on the basis of the DF theory in the quantal hyper-
netted~QHNC! approximation@4,5#. In this QHNC formal-
ism, the bare electron-ion interactionveI(r ) and the ionic
chargeZI are determined self-consistently by regarding a liq-
uid metal as a mixture of nuclei and electrons@6#. Already,
we have applied this approach to liquid metallic hydrogen
@4#, lithium @7#, sodium @8#, potassium@9#, and aluminum
@10# obtaining ion-ion structure factors in excellent agree-
ment with the experiments. The QHNC equations are derived
from exact expressions for the electron-ion and ion-ion
RDF’s in an electron-ion mixture: these exact expressions
are only the formal results derived from the DF theory. A
molecular-dynamics scheme to treat an ion-electron mixture
can be set up on the basis of these exact relations, which
states that the electron-ion mixture can be regarded as a
quasi-one-component liquid interacting via apairwise inter-
action in the description of the ion-ion RDF@5# ~hereafter,
referred to as the QHNC-MD method!. Since the QHNC
formalism is derived on the electron-ion model where the
bound electrons forming an ion in a liquid metal is assumed
to be clearly distinguished from the conduction electrons and
the overlap of the core electrons is negligible, the
QHNC-MD method is only applicable to simple liquid met-
als: its application to liquid alkali metals is taken as an ideal
test of the QHNC-MD method. Thus the QHNC-MD method
has been shown to yield structure factors of liquid alkali
metals in excellent agreement with experiments as the result
of a first-principles calculation in the present work.

In Sec. II, we sketch the QHNC formulation: exact ex-
pressions for RDF’s in an electron-ion mixture are obtained
from the DF method@12#, and the nucleus-electron model is
shown to provide a bare electron-ion interaction, which
should be determined self-consistently. The procedure to
perform the MD simulation based on the QHNC theory is
shown in Sec. III: in the QHNC formulation the effective
ion-ion interaction used in the MD simulation depends on the
ionic structure specified by the ion-ion RDF. Therefore in the
application of this MD scheme it is important to extrapolate
the MD RDF beyond the truncation radius of the simulation
correctly so as to be used in the determination of an effective
ion-ion interaction; this is exemplified by the method de-
scribed in Sec. III. Numerical procedure of the QHNC-MD
method and the results of its application to alkali liquid met-
als are described in Sec. IV. The last section is devoted to a
discussion, where the advantages and disadvantages of the
QHNC-MD method against the CP-MD method are also ar-
gued.

II. QUANTAL HYPERNETTED CHAIN THEORY

A simple liquid metal can be thought of as a binary mix-
ture of ions with a definite ionic chargeZI and the conduc-

tion electrons; the interactionsv i j (r ) between particles
@ i , j5I or e# are taken as pairwise. The ions constitute a
classical fluid, while the conduction electrons form a quan-
tum fluid. Let us refer to this mixture as the ion-electron
model for a liquid metal. Since the ions are regarded as clas-
sical particles in the electron-ion model, the ion-ion and
electron-ion RDF’s become identical with the ion- and
electron-density distributions around a fixed ion in the mix-
ture, respectively@5#. Because a fixed ion causes external
potentials acting on ions and electrons in the homogeneous
mixture, the DF theory can give the exact expressions for the
ion- and electron-density distributions,nI(r uI) andne(r uI ),
in terms of those of noninteracting systemsni

0(r ) under ef-
fective external potentialsUi

eff(r ) @i5I, e#

Ui
eff~r !5v i I~r !1

dFint
dni~r uI!

2m i
int , ~1!

with the use ofFint and m i
int , the interaction part of the

intrinsic free energy and the chemical potential, respectively
@11#. As a result, the DF theory provides exact, but formal,
expressions for the ion-ion RDFgII(r ) and electron-ion RDF
geI(r ) as follows:

n0
I gII~r !5nI~r uI!5nI

0~r uUI
eff![n0

I exp@2bUI
eff~r !#, ~2!

n0
egeI~r !5ne~r uI!5ne

0~r uUe
eff![(

i

uc i~r !u2

exp@b~« i2m0
e!#11

,

~3!

wherem0
e denotes the chemical potential of a noninteracting

electron gas,n0
I (n0

e) is the number density of ions~elec-
trons!, and b5(kBT)

21 the inverse temperature. The
electron-density distributionn e

0(r uU) is determined by solv-
ing the wave equation for an electron under the external po-
tentialU(r )

@2~\2/2m!¹21U~r !#c i~r !5« ic i~r !. ~4!

In a similar way to the case of classical binary mixtures, the
effective external potentialsUi

eff(r ) given by Eq. ~1! are
written as

Ui
eff~r !5v i I~r !2Gi I~r !/b2BiI~r !/b, ~5!

Gi I~r ![(
l
E Cil ~ ur2r 8u!n0

l @glI~r !21#dr 8, ~6!

in terms of the direct correlation functions~DCF! Ci j (r ) and
the bridge functionsBiI(r ). Here, the DCF’sCi j (r ) in the
ion-electron mixture are defined within the framework of the
DF theory by

Ci j ~ ur2r 8u![2b
d2F int@nI ,ne#

dni~r !dnj~r 8!
U
0

, ~7!

where the suffix 0 denotes the functional derivative at the
uniform densities@11#. Actually the explicit expression for
the DCF’s are given by the Fourier transform in the matrix
form
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ANC~k!AN5~ x̃Q
0 !212~ x̃Q!21 ~8!

in terms of the density-response functionsx̃Q[ix
i j
(k)i and

x̃ Q
0[ix0i(Q)d i j i of the interacting and noninteracting sys-

tems, respectively, withN[in0
i d i j i @11#. Note here that the

density-density response functionsx i I (Q) concerning ion re-
duced to the structure factorsSiI (Q) andx0I(Q)51, since
the ions behave as classical particles@5#. From this definition
of the DCF’s the Ornstein-Zernike relations are derived for
the ion-electron mixture

gII ~r !215CII ~r !1GII ~r !, ~9!

geI~r !215B̂CeI~r !1B̂GeI~r !. ~10!

Here B̂ denotes an operator defined by

FQ@B̂a f ~r !#[~xQ
0 !aFQ@ f ~r !#5~xQ

0 !aE exp@ iQ•r # f ~r !dr ,

~11!

for an arbitrary real numbera, and represents a quantum
effect of the electron through the density-response function
xQ
0 of the noninteracting electron gas.
A set of integral Eqs.~2! and ~3! are exact but formal

expressions, as well as all other equations in the above.
However, the ionic chargeZI and the electron-ion interaction
veI(r ) must be given beforehand, when we apply these for-
mulas to a liquid metal as an ion-electron mixture. In order
to determine these quantities from first principle, a liquid
metal must be treated more fundamentally as a mixture of
nuclei and electrons~the nucleus-electron model!, where all
interactions between particles are known as pure Coulombic.
In this model, input data in dealing with a liquid metal is
only the atomic numberZA to specify the material. For this
purpose, let us consider a liquid metal as a mixture ofNI
nuclei andZANI electrons, and solve the problem to deter-
mine the electron-density distribution around a nucleus fixed
at the origin in this mixture. Since a fixed nucleus causes an
external potentialU(r )52ZAe

2/r for this mixture to pro-
duce an inhomogeneous system, the DF theory can be ap-
plied to this problem. It should be noticed that the DF theory
contains some arbitrariness in the choice of a reference sys-
tem to describe the system@11#. We can get a simple descrip-
tion of the nucleus-electron mixture if the reference system is
chosen to be a mixture consisting ofNI21 noninteracting
ions andZI(NI21)1ZA noninteracting electrons: here, each
ion is assumed to haveZB bound electrons with a charge
distribution rb(r ) around it and an ionic charge
ZI[ZA2ZB . With use of this reference system, the DF
theory can provide an effective external potentialveN

eff (r ) for
electrons around the fixed nucleus. Then, the electron-
density distributionne(r uN) around the fixed nucleus is ob-
tained by solving the wave equation forveN

eff (r ) in the sum of
the bound- and free-electron parts

ne~r uN!5ne
0b~r uveN

eff !5ne
b~r uN!1ne

f ~r uN!. ~12!

Hence the bound-electron distributionne
b(r uN) thus deter-

mined constitutes the definition of the ‘‘ion’’ in the electron-
ion model. Furthermore, this bound-electron distribution

ne
b(r u N) should be taken to be identical with the electron
distributionrb(r ) of an ion in the reference system, since the
ion formed around the central nucleus is necessary to be the
same structure as any ion in the system. Thus we obtain a
self-consistent condition to determine the distributionrb(r )
in the premise:

rb~r !5ne
b~r uN![ne

b~r !, ~13!

with the bound-electron numberZB5*rb(r )dr . On the
other hand, the free-electron partne

f (r u N) in Eq. ~12! is
taken as the electron-ion RDFn0

egeI(r ) of the electron-ion
mixture with the free-electron densityn0

e5ZIn0
I , and the

nucleus-nucleus RDF becomes the ion-ion RDFgII (r ).
With use of this reference system, we can obtain a trac-

table expression ofveN
eff (r ) for the wave equation to deter-

mine ne(r uN) by introducing some approximations to the
exchange-correlation term involved in it@6#:

veN
eff ~r !5 ṽeI~r !2

1

b(
l
E Cel~ ur2r 8u!n0

l @glI ~r 8!21#dr 8,

~14!

wheremXC(n) is the exchange-correlation potential in the
local-density approximation~LDA !. Note that this expres-
sion is equal to Eq.~5! without the electron-ion bridge func-
tions BeI(r ) except that the bare electron-ion interaction is
explicitly given by

ṽ eI~r ![2
ZAe

2

r
1E vee~ ur2r 8u!ne

b~r 8!dr 8

1mXC~ne
b~r !1n0

e!2mXC~n0
e!. ~15!

In this way, the treatment of a liquid metal as a nucleus-ion
mixture is shown to provide the ion-electron model, where
the bare electron-ion interactionṽeI(r ) and the ionic struc-
ture rb(r ) can be determined in a self-consistent manner.

With the help of the result from the nucleus-electron
model, we can derive a closed set of integral equations for
the ion-electron mixture, if we introduce the following ap-
proximations: ~A! the electron-ion bridge function in Eq.
~21! is neglected:BeI(r ).0, ~B! the electron-electron DCF
Cee(r ) is approximated@5# as

Cee~Q!52bvee~Q!@12Gjell~Q!#. ~16!

using the local-field correction~LFC! Gjell(Q) of the jellium
model for an electron gas,~C! the bare ion-ion potential
v II (r ) is taken as pure Coulombic, i.e.,v II (r )5(ZIe)

2/r ,
and ~D! the bare electron-ion potential is given by
veI(r )5 ṽeI(r ) of Eq. ~15!. We have called this set of equa-
tions the quantal hypernetted chain equations because of the
approximationBeI(r ).0 in Eq. ~5!.

III. MOLECULAR DYNAMICS SIMULATION BASED
ON QUANTAL HYPERNETTED CHAIN THEORY

It is important to realize that the electron-ion model leads
to the neutral-fluid model, where the ionic behavior of a
liquid metal is taken to be the same as a neutral one-
component fluid interacting via a binary effective interaction
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in treating the ion-ion RDF. This neutral-fluid model is de-
rived from the electron-ion model, when an effective ion-ion
potential is defined in such a way that the RDF of a one-
component fluid should become identical withgII (r ) of the
electron-ion mixture:

g~r ![exp@2bveff~r !1G~r !1B~r !#5gII ~r !, ~17!

with use of the Ornstein-Zernike relation for a neutral one-
component fluid

g~r !215C~r !1G~r !. ~18!

In the above, the DCF for the one-component fluid is
defined by n0

I C(Q)[12SII (Q)
21 and G(r )

[*C(ur2r 8u)n0
I @g(r 8)21#dr 8.

Thus we can write the explicit expression for the effective
ion-ion potential of a liquid metal in the neutral-fluid model
as

bveff~Q![bv II ~Q!2
uCeI~Q!u2n0

exQ
0

12n0
eCee~Q!xQ

0 , ~19!

by taking the bridge functionB(r ) to be BII (r ) of the
electron-ion mixture. Equation~19! can be interpreted within
the scope of the standard pseudopotential theory by regard-
ing CeI(r ) as the pseudopotentialwb(Q)52CeI(Q)/b. In
this way, the ion-electron model is reduced exactly to the
neutral-fluid model with abinary effective interaction Eq.
~19!, in which the many-body forces are taken into account
in the form of the linear response expression~19!, since the
nonlinear effect in the electron screening is involved in terms
of the electron-ion DCF, which plays the role of a nonlinear
pseudopotential.

By noting the above relations~17! – ~19!, the exact ex-
pressions~2! – ~10! for the electron-ion model can be trans-
formed into a set of integral equations: one is the integral
equation for a one-component fluid with the effective ion-ion
potentialveff(r )

C~r !5exp@2bveff~r !1G~r !1B~r !#212G~r !, ~20!

and the other an equation for the effective ion-ion interaction
veff(r ), that is expressed in the form of an integral equation
for the electron-ion DCFCeI(r )

B̂CeI~r !5ne
0~r uveI2GeI /b2BeI /b!/n0

e212B̂GeI~r !,
~21!

since the effective interactionveff(r ) is given in terms of
CeI(r ) by Eq. ~19!. In contrast with the usual effective po-
tential in the pseudopotential theory, the effective potential
~19! depends on the ion configuration represented by the
ion-ion RDF gII (r ) through the term: GeI(r )
[( l*Cel(ur2r 8u)n0

l @glI (r )21#dr 8 in Eq. ~21!.
Under the assumptions~A! – ~D! mentioned before, the

QHNC Eqs.~20! and~21! enables us to perform anab initio
molecular-dynamics~MD! simulation which requires only
the atomic numberZA and thermodynamic states as input
parameter, in principle. The first estimation forveff(r ) can be
obtained with the use ofCeI(r ) evaluated by Eq.~21! with
an initial guess forgII (r ). Next, an integral Eq.~20! for a

one-component fluid can be solved by performing the clas-
sical MD simulation for thisveff(r ) to produce new ion-ion
RDFgII (r ); this is used again in Eq.~21! to determine a new
estimation forveff(r ). This process will be continued until
convergence of the effective ion-ion potential is achieved
~we refer to this procedure as the QHNC-MD method!. How-
ever such a straightforward repetition of the MD simulation
to solve the QHNC equations is not practical in the view-
point of the computational cost. Since the dependence of the
effective ion-ion potentialveff(r ) on the ionic configuration
is rather weak in a simple metal as we have shown in@10#,
we can adopt an approximate theory forB(r ) in Eq. ~20! to
get an initial veff(r ) for the QHNC-MD method. For this
purpose, we take the variational modified HNC~VMHNC!
equation proposed by Rosenfeld@13#, in which the bridge
function is approximated byBPY(r ;h) of the Percus-Yevick
equation for hard spheres of diameters with the packing
fraction h5pn0

I s3/6. In the VMHNC equation, the adjust-
able parameterh is determined by the following condition:

1

2
n0
I E @g~r !2gPY~r ;h!#

]BPY~r ;h!

]h
dr1

2h2

~12h!3
50 ,

~22!

wheregPY(r ;h) is the RDF for the hard-sphere fluid with the
Percus-Yevick equation. Thus, in a similar way to the
QHNC-MD method, the integral equation~20! in the VM-
HNC approximation is solved in a coupled manner with Eq.
~21! producing an effective ion-ion interaction@referred to as
the QHNC-VM method#. Furthermore, an initial potential
veff(r ) to this QHNC-VM method can be obtained by ap-
proximating gII (r ) in Eq. ~21! by the step function
u(r2a) with the ion-sphere radiusa5(4pn0

I /3)21/3. When
this final veff(r ) from the QHNC-VM method is used as an
input to the QHNC-MD method, the convergent result can be
obtained by a few repetitions of the MD simulation. Finally
our procedure to solve the QHNC equation with the MD
simulation ~the QHNC-MD method! is summarized as the
flow chart shown in Fig. 1. For an initial potentialveff(r )
given by the approximation gII(r )5u(r2a), the
QHNC-VM method in thepreparation phaseyields a good
initial guess for the QHNC-MD method. Then the MD simu-

FIG. 1. Flow chart of the QHNC-MD method. The initial po-
tentialveff(r ) is determined by approximatinggII (r ) in Eq. ~21! by
the step functionu(r2a) with the ion-sphere radiusa.
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lation is repeatedly performed to achieve convergence of
veff(r ) in the refinement phase.

There are two important points to be noticed regarding the
MD simulation when applied to the QHNC-MD method.
One is that the computer simulation provides the RDFg(r )
only within the half of the side lengthL of the simulation
cell. This causes an unavoidable truncation error in the cal-
culation of the Fourier transformFQ@g(r )21# to be used in
the evaluation of Eqs.~19! and~21!. The second point is that
the MD simulation is performed inevitably on a truncated
potential for a liquid metal whose effective ion-ion potential
is accompanied by a long-ranged oscillatory tail: the com-
puter simulation may yield different RDF’s depending on the
cutoff radiusRc of the potential. Recently we have proposed
a precise procedure@12# to improve these two defects at the
same time and to get the RDF in the whole range of distance
for the full potentialveff(r ). This method can be applied
even to thesmall-sizesimulation result for the truncated po-
tentialuc(r ):

uc~r ![H veff~r !2veff~Rc! for r,Rc

0 for r>Rc.
~23!

As the first step of this procedure, we extract the bridge
function from the raw MD RDF data. For this purpose, we
extend the the raw RDF data of the MD simulation
gMD(r ), by solving an integral Eq.@14#.

g~r ![H gMD~r ! for r,R

exp@2buc~r !1G~r !# for r>R,
~24!

coupled with the Ornstein-Zernike relation, whereR is the
extrapolating distance (R,L/2). At this stage, in order to
obtain a reliable bridge function, it is essential to takeR as
short as about 3 to 4 interatomic spacings or simply as
R5R c @12# and to discard the RDF data outside the distance
R so as to reduce the statistical noise contained in the raw
RDF data. Using the extendedg(r ), the bridge function
BMD(r ) can be extracted for distances wheregMD(r )Þ0 by

BMD~r ![H buc~r !1 ln@gMD~r !#2G~r ! for r,R

0 for r>R.
~25!

At the second step to get the RDF for the full potential
veff(r ), we solve the integral Eq.~20! for the full potential
with use of thisBMD(r ) as an approximation to that of the
full potential: this can be justified by the fact that the bridge
function is not sensitive to the long-range part of the poten-
tial and becomes very weak for the long-range distance@12#.

IV. APPLICATION TO LIQUID ALKALI METALS

A. Numerical procedure of QHNC-MD method

Liquid alkali metals constitute ‘‘simple’’ metals in the
sense that the bound electrons forming an ion are clearly
distinguished from the conduction electrons and the overlap
of the core electrons are negligible; the approximations~A!–
~D! used in the QHNC-MD method become quite good ones
for these metals. Therefore we have applied the QHNC-MD
method for five liquid alkali metals~Li, Na, K, Rb, and Cs!
near the melting point using the parameters specified in

Table I; the temperature and density have been chosen to be
compared with the experimental data in@15–20#. Here, the
temperature and density of alkali liquids are specified by two
dimensionless parameters: the plasma parameterG5be2/a
and r s5a/aB in units of the Bohr radiusaB , with the aver-
age ion-sphere radiusa.

In our application of the QHNC-MD simulation to the
alkali liquids, the local-field correction of the jellium model
in Eq. ~16! is chosen to be that proposed by Geldart and
Vosko @26#, since it has a simple structure and gives a good
approximation. In Eq.~15!, the expression given by Gun-
narsson and Lundqvist@27# is adopted as the LDA for the
exchange-correlation potentialmXC(n).

After the preparation of initial effective potential by the
QHNC-VM method, two iterations in the refinement phase
of the QHNC-MD method~Fig. 1! are sufficient to obtain a
convergent solution for alkali liquid metals; 16 000 particles
have been used in the first MD run~Run-1! and 4 000 par-
ticles for the second MD run~Run-2!. The MD simulation
has been performed over 50 000 time steps for Run-1 and
100 000 time steps for Run-2 with the cubic periodic bound-
ary conditions; the temperature of the system is kept constant
by the isokinetic constraint@22#. The equations of motion are
integrated by a fifth order differential algorithm@23# with the
time incrementDt50.0025n0

I21/3(mIb) with the mass of an
ion mI : the corresponding real time is shown in Table I. In
each MD simulation of Run-1 and Run-2 for iterations, the
effective potential is cut at the radiusRc located at the node
of the Friedel oscillation ofveff(r ) as shown in Table I. All
MD simulations have been carried out on a vector-parallel
processor Monte-4@24# at the Japan Atomic Energy Re-
search Institute. The computational time required for 10 000
steps is about 30 to 50 hours for 16 000 particles including
the sampling of the RDF.

The integral Eq.~24! has been solved by an iterative pro-
cedure introduced by Ng@25# to extend the raw MD data
gMD(r ) to the wholer range: the extending distanceR in this
procedure~24! is taken to beRc for the whole cases. The
number of grid points and step size used in numerical inte-
grations are 1024 points andDr50.025a, respectively. Us-
ing C(r ) obtained by the HNC equation as an initial input
function, it takes about 10 000 iterations to achieve conver-
gence.

In order to examine both numerical and computational
efficiency of the QHNC-MD method, we have tested the

TABLE I. Parameters used in the present QHNC-MD simula-
tions for liquid alkali metals.a5(4pn0

I /3)21/3 is the ion-sphere
radius;G5be2/a and r s5(4pn0

e/3)21/3 are the plasma parameter
and the electron-sphere radius in units of the Bohr radiusaB , re-
spectively.Rc1 andRc2 are the cutoff length of the effective ion-ion
potential veff(r ) in the MD simulation for the first MD run and
second MD run~see text!, respectively.

Element T~K! G r s Dt ~fs! Rc1 (a) Rc2 (a)

Li 470 203.1 3.308 0.940 5.88 5.88
Na 373 209.1 4.046 2.349 7.06 7.06
K 338 185.9 5.024 3.996 6.76 6.76
Rb 313 187.2 5.388 6.585 6.81 6.80
Cs 303 180.3 5.781 8.954 6.83 6.84
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convergence of the RDF by evaluating following consistency
measure forg(r ):

Dgi~r ![gi~r !2gi21~r !, ~26!

uDgi u[S 4pn0
I

3 E
0

`

uDgi~r !u2r 2dr D 1/2. ~27!

Heregi(r ) is gII (r ) obtained by thei th MD simulation and
g0(r ) is that obtained by the final step of the preparation
phase. Figure 2 shows the consistency measure~26! of the
present QHNC-MD simulation for the case of liquid Li,
yielding the values uDg1u51.5331021 and uDg2u
55.9231023. It is easily seen that the convergence of
gII (r ) is very fast; the difference ofgII (r ) between Run-1
and Run-2 is situated almost within the statistical error of the
sampling of the RDF in the MD simulation: this means ac-
curacy of about 3 to 4 digits is already achieved in the
QHNC-MD calculation of Run-1. In a consistent way to the
convergence of the RDF, a good convergence of the effective
ion-ion potentialveff(r ) is achieved in Run-1. Similar to the
case of liquid Li, a good convergence ofgII (r ) andveff(r ) is
also achieved for other liquid metals. It should be noted that
the preparation phase of the QHNC-MD method largely en-
hances the convergence ofveff(r ).

Concerning the treatment of the raw MD data for the ion-
ion RDF, it should be emphasized that the extension proce-
dure @12# to obtain the RDF for the full potential applied to
the raw MD data is indispensable for the present calculation.
This situation is illustrated in Fig. 3, where the truncation
error in gII (r ) due to the use of the cutoff potential in the
MD simulation is so large that the convergence of the
QHNC-MD method will not be attained with the raw RDF
data. In addition, the extended RDF for the full potential is
almost identical with the result of the VMHNC equation for
the same potential~Fig. 3! for r*5a, i.e., after the third
peak of RDF. This suggests that the long-ranged Friedel os-
cillation of veff(r ) typically seen for liquid metals is essential
for the detailed structure of the RDF at long distances, and it
is necessary to include the information of the long-range part
of veff(r ) into gII (r ) in order to obtain a self-consistent so-
lution of the effective ion-ion potential by the QHNC-MD
calculation.

It is concluded that the convergence of the present
QHNC-MD simulation is well attained from both numerical
and computational points of view, helped by a good initial
estimation from the VMHNC equation in the preparation
phase; the extension procedure to obtain the full-range RDF
for the uncut effective potential is also necessary to get the
convergence.

B. Ion-ion and electron-ion radial distribution functions

Following the procedure mentioned above, we obtain the
effective interatomic interaction, the ion-ion and electron-ion
RDF’s, the charge distributionr(r ) of neutral pseudoatom,
the bound-electron distributionnb(r ) forming an ion and the
bridge functions for liquid alkali metals in a self-consistent
way from the atomic number as the only input. In the first
place, we show structure factors, the Fourier transform of the
ion-ion RDF’s. It is important for a detail comparison with
the experiment to use the MD RDF corrected for a full po-
tential and extrapolated to a whole range of the distance in its
Fourier transform.

Figure 4 exhibits the structure factors for liquid Li calcu-
lated by the QHNC-MD simulation in comparison with the
experimental result@15#. It is clearly seen that the present
result is in excellent agreement with the experiment, improv-
ing the detailed structure ofSII (Q) near its second peak
compared with the result of the VMHNC equation~the final
result of the preparation phase!. This improvement on
S II (Q) by the refinement phase essentially relies on the de-
tailed oscillatory behavior of the bridge function extracted
from the raw RDF of the MD simulation. The discrepancy in
the bridge function between the MD simulation and VM-
HNC equation gives no serious effects on the first peak of
the RDF. But details of the RDF for 2a&r&5a are rather
sensitive to the oscillation ofB(r ) in a similar way as dis-
cussed in@12#. Therefore the use of the extracted bridge
function BMD(r ) to determine the corrected RDF is impor-

FIG. 2. The consistency measureDgi(r ) defined by Eq.~26! for
liquid Li; dot-dashed curve,Dg1(r ); dashed curve,Dg2(r ). Solid
curve is the final result for the ion-ion RDFgII (r ).

FIG. 3. Comparison of the raw MD RDF for liquid Li with the
extended RDF: dashed curve is the raw RDF data; solid curve is the
extended RDF with the full potential by Eq.~20! with BMD(r ); s is
the result from the VMHNC equation for the present self-consistent
potential. L is the side length of the simulation cell;
L/2512.794a522.40 Å in the MD simulation for liquid Li with
4 000 particles. The discrepancy between the raw data and extended
data becomes clear forr*4a, i.e., after the second peak of RDF.
On the other hand, the extended RDF becomes identical to that of
the VMHNC equation forr*5a, i.e., after the third peak of RDF.
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tant in order to guarantee the correct behavior of the structure
factor by the Fourier transform. The structure factors calcu-
lated for Na and K are shown in Fig. 5 in comparison with
the neutron and x-ray experiments@16,17#. The QHNC-MD
structure factor of Na is in excellent agreement with the
x-ray result~full circles! showing a small deviation from the
neutron data~circles! at the first peak, while the curves of the
QHNC-MD structure factor for K lies between the neutron
~circles! and the x-ray~full circles! experimental results.
Also, the structure factors from the QHNC-MD method for
Rb and Cs are compared with the neutron and the x-ray
experiments@18–20# in Fig. 6. The first peak of the Rb struc-
ture factor observed by the neutron experiment~full circles!
@18# is shifted a little to the largeQ side compared with that
observed in the x-ray experiment~circles! @20#; the
QHNC-MD result has the same first-peak position to the
x-ray data with a little different height and shows overall

agreement with the neutron observation. On the other hand,
the QHNC-MD structure factor of Cs becomes higher in the
first peak than the experiment@16# and shows a small devia-
tion in the phase of the oscillation of the structure factor for
the largeQ region compared with the experiment. In our
treatment, we solve the Schro¨dinger equation to obtain the
bound-electron distribution and electron-ion RDF; the rela-
tivistic effect is not taken into account. In the case of Cs, the
relativistic effect may contribute to the calculation of the
structure factor, since its atomic numberZA555 is rather
large; there is a possibility that this effect may be ascribed to
this small discrepancy between the calculated and experi-
mental results in the Cs structure factor. In the same way as
shown in the Li structure factor, the QHNC-VM structure
factors deviate from the QHNC-MD results near the their
second peak for Na, K, Rb, and Cs as seen Figs. 5 and 6.
This second-peak difference between the QHNC-MD and
QHNC-VM structure factors brings about a distinct differ-
ence in the RDF’s obtained from their Fourier transform, as
can be seen from an example of Na shown in Fig. 7. Thus the
RDF from the VMHNC equation is found to be not so exact
as to compare with the details of the experimental results for
alkali liquids; the QHNC-MD method is shown to produce
reliable results for all alkali liquids.

Next, we proceed to discuss the electronic structure
around ion. The electron-ion RDF’s from the QHNC-MD
method are shown in Fig. 8 for the case of Rb at temperature
313 K together with the ion-ion RDF. The electron-ion struc-
ture factorSeI(Q) is represented in the form@4#:

SeI~Q!5
r~Q!

AZI
SII ~Q!, ~28!

in terms of the ion-ion structure factor and the charge distri-
bution of the pseudoatom:

FIG. 4. The ion-ion static structure factorSII (Q) for liquid Li:
solid curve, the QHNC-MD result; dotted curve, result of the final
step of the preparation phase~the QHNC-VM result!; s, experi-
mental result taken from@15#. The deviation of the VMHNC result
from the experiment is corrected by the QHNC-MD method.

FIG. 5. The ion-ion static structure factorsSII (Q) for liquid Na
~the upper! and K ~the lower!: solid curve, the QHNC-MD result;
dotted curve, the QHNC-VM result;s and d, the neutron and
x-ray experiments taken from@16# and @17#, respectively.

FIG. 6. The ion-ion static structure factorsSII (Q) for liquid Rb
~the upper! and Cs~the lower!: solid curve, the QHNC-MD result;
dotted curve, the QHNC-MD result~the final step of the preparation
phase!; s andd, the x-ray and neutron experimental results for Rb
taken from @20# and @18#, respectively. Experiment result for Cs
denoted bys is taken from@16#.
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r~Q![
n0
eCeI~Q!xQ

0

12n0
eCee~Q!xQ

0 . ~29!

With the help of the above equations, the pseudopotential
method using the Ashcroft model potential can evaluate the
electron-ion RDF by inserting it in~29! instead of
2CeI(r )/b; its result using the empty core radius 1.27 Å
has no inner-core structure near the origin as is expected. In
the QHNC-MD method, we need not introduce any pseud-
ization in treating the core region. Therefore, the electron-ion
RDF geI(r ) exhibits the inner-core structure similar to a free
atom as is shown in Fig. 8 in contrast with the results of the
pseudopotential method~full circles!. It is interesting to note
that the electron-ion RDF has an oscillation with an inverse
phase to that of the ion-ion RDF, since the electrons are
pushed away by an ion as a whole in the core region. The
charge distributionr(r ) of the pseudoatom in a liquid Rb has
a similar structure to the distributionr5s(r ) of the 5s elec-
trons in the free atom~see Fig. 9!; therefore, the total
electron-density distributionnb(r )1r(r ) is almost the same
to that of a free atom as was indicated by Ziman. Also, note
that the positions of the dips in the electron-ion RDF are

coincident with those that appeared in the 5s-electron charge
distributionr5s(r ) in a free atom; these dips in the electron-
ion RDF reflect the inner structure of an ion in a metal. The
electron-ion RDF’s of liquid alkali metals~Li, Na, K, Rb,
and Cs! are shown in Fig. 10, where the inner-core structure
is omitted near the origin in each curve. The dip in the
electron-ion RDF becomes shallower and is shifted to the
right side indicating the growth of the core size, as the
atomic number increases from Na to Cs: the curve of Li
shows an exception to this tendency.

When the electron-ion RDF is determined by solving the
wave equation for the self-consistent potentialveI

eff(r ), we
obtain from Eq.~21! the electron-ion DCFCeI(r ), which
yields an effective ion-ion potentialveff(r ) of Eq. ~19!. Cor-
responding to each curves ofgeI(r ) in Fig. 10, the effective
ion-ion potentialveff(r ) is determined for each element as
shown in Fig. 11. It should be emphasized that there are no
units for the scaling lengths and energies to effective ion-ion
potentials determined by the QHNC-MD method in contrast
with those obtained by using the Ashcroft model potential
@28#. Similarly, no scaling features are found in the effective
ion-ion potential obtained by the Dagens-Rasolt-Taylor
method@29#, which can be thought of as an approximation to
the QHNC formulation in the sense that the ion-ion RDF is
there replaced by the spherical vacancy in Eq.~14! @30#.
Nevertheless, it is shown that for liquid alkali metals near the
melting point the ion-ion RDF’s from the QHNC-MD
method can be scaled almost into one curve by taking the
average ion radiusa in the units of length as indicated in Fig.

FIG. 7. The ion-ion radial distribution functiongII (r ) for liquid
Na: solid curve, the QHNC-MD result; dotted curve, the
QHNC-VM result; d, experimental result taken from@21#. The
VMHNC approximation brings about small errors in the amplitude
and phase compared with the experimental RDF.

FIG. 8. The electron-ion and ion-ion radial distribution func-
tions for liquid Rb: solid curve, the QHNC-MD result; dotted
curves, the QHNC-VM result;d, The electron-ion RDF derived by
the use of the Ashcroft model potential. The electron-ion RDF has
an inverse phase to the ion-ion RDF in their oscillation around
unity.

FIG. 9. The electron charge distribution of a pseudoatom in
liquid Rb: solid curve, the QHNC-MD result; dashed curve, the
charge distribution of the 5s electrons in a free Rb atom;d, the
pseudopotential result with use of the Ashcroft model potential.

FIG. 10. The electron-ion RDF’s for liquid alkali metals: inner-
core structures near the origin are omitted.
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12 except Cs. This fact was already found in the experimen-
tal results for the structure factors@31,16# and pointed out
theoretically@32#.

As the summarization of this section, we conclude that the
present application of the QHNC-MD method to liquid alkali
metals provides the ionic structures in excellent agreement
with the experiments within the computational capacity
available at present, enabling us to handle a relatively large
system size in the MD simulation in contrast with the usual
ab initio simulation for the electron-ion mixture. So as to be
consistent with the ionic structure specified by the ion-ion
RDF, the QHNC-MD method is shown to give the electron-
ion RDF geI(r ), the charge distributionr(r ) of a pseudo-
atom and the density distributionnb(r ) of the bound elec-
trons forming an ion in a liquid metal at the same time;
alternatively this electronic structure produces the ion-ion
potentialveff(r ) used for the MD simulation.

V. DISCUSSION

We have shown that the QHNC-MD formulation provides
a very precise description of simple liquid metals at any state
from the atomic numberZA as the only input: this method is
proven to yield a first-principles calculation. Our previous
calculations with the VMHNC equation, which has been
used for input to the QHNC-MD method, generated the
structure factors with a small but systematic deviation from
experiments near the second peak. Now our QHNC-MD

method is shown to correct this deviation and to yield results
in excellent agreement with experiments in the whole range
of wave numberQ. Even in alkali metals, there is no scaling
unit of lengths and energies for the effective ion-ion poten-
tials veff(r ) determined from the QHNC-MD method; each
potential is different from the other and reflects a difference
in the bound-electron structure of an ion in each metal. The
situation is different in the case of the effective potential
calculated by use of the Ashcroft pseudopotential, which
gives an almost single potential curve for all alkali liquids if
scaled with the proper unit@28#. However, it is interesting to
note that the ion-ion RDF’s can be scaled by the unit ofa,
the average ion-sphere radius, which enables us to plot the
results in almost a single curve for alkali liquids~Li, Na, K,
Rb! near the melting point, except the case of Cs.

In our QHNC-MD formulation, the exchange-correlation
effect expressed by the LFCG(Q) and the LDAmXC(n) are
introduced from outside the framework of our formulation:
those of the jellium model, where the ion distribution is re-
placed by the positive uniform background. The jellium
model gives a good description for the electrons in alkali
metals; the present success of the QHNC-MD method de-
pends on this fact. In addition, the structure factors of alkali
metals calculated by this method are almost independent of
what kind of LFC to choose. However, it should be noted
that the LFC in the QHNC formulation should depend on the
ion configuration precisely, since it is defined for the
electron-electron DCF in the electron-ion mixture.

To compare the MD structure factors with experiments in
detail, it is important to extrapolate the MD RDF to large
distances and to correct errors caused by the cut effective
ion-ion potential used in the MD simulation. Our extrapola-
tion method@12# is shown very efficient in dealing with the
raw MD data for a liquid metal with an ion-ion potential
accompanied by a long-range Friedel oscillation; this ex-
trapolation method is indispensable to obtain a convergent
solution in the QHNC-MD method. In order to obtain so
reliable a bridge function for the extrapolation of the MD
RDF, it is necessary to get a reasonable statistical accuracy
for evaluation of the RDF; for this purpose, the MD simula-
tion must be performed for at least several thousand particles
taking about 1010 to 1011 samples@12#.

The Car-Parrinello MD~CP-MD! method is based on the
same ground to the QHNC-MD method: the electron-ion
mixture model for liquid metals and the jellium model for
electrons, which are treated by the DF theory. Also, the bare
ion-ion interaction is taken as a pure Coulombic in both
treatments. However, in the CP-MD method, the bare
electron-ion interaction is approximated by a pseudopoten-
tial, which is introduced from outside of the CP-MD formu-
lation; this fact makes a contrast with our QHNC-MD
method where it is obtained self-consistently within the
framework of the QHNC formulation and no pseudization is
necessary in treating the core region. As a consequence, the
electron-ion RDF extracted from the CP-MD result does not
have an inner core structure. It should be emphasized that in
the QHNC formulation the inner electronic structure around
a fixed nucleus, such as the electron-ion RDF in the core
region and the bound-electron distributionnb(r ) of an ion in
a liquid metal, is determined to be consistent with the outer
structure, that is, with the surrounding ion and electron con-

FIG. 11. Effective ion-ion potentials for liquid alkali metals:
Scaling properties are not found in the alkali potentials.

FIG. 12. The ion-ion RDF’s for liquid alkali metals: The RDF’s
of Li, Na, K, and Rb are written almost in a single curve in the units
of length a, the ion-sphere radius. The RDF of Cs~the dotted
curve! shows a small deviation; the dashed curve: Li. The differ-
ence among the results for Na, K, and Rb are indiscernible on this
scale.
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figurations. Therefore, the QHNC-MD method can be ap-
plied to a high density plasma, where a usual pseudopotential
cannot be constructed due to the fact the atomic structure in
a highly compressed plasma state is quite different from that
in the vacuum. When there is no core electrons in such as a
hydrogen plasma@33#, the CP-MD method can be applied
without any of the problems mentioned above, since the
electron-proton interaction is taken as the pure Coulombic
potential.

While our methods treat the single-center problem to de-
termine the electron- and ion-density distributions around a
fixed ion in a liquid metal, the CP-MD method treats elec-
trons in the multicenter problem: the electron distribution is
determined for the multi-ion configuration and the ions are
considered to be interacting via the many-body forces in the
CP-MD treatment. Therefore data of the CP-MD method
contains many-body correlations such as a three-body corre-
lation. On the other hand, the QHNC-MD simulation has a
ground to give only a pair correlation exactly: for example, a
three-body correlation extracted the QHNC-MD simulation
has no assurance to be exact. Moreover, it should be noticed
that an orbital of an ion determined by the QHNC-MD simu-
lation may be taken as an average orbital in some sense
compared with that determined by the CP-MD simulation:
there, many-body forces are changing at every time step,
while the binary ion-ion interaction remains constant at ev-
ery time step in the QHNC-MD simulation. It is interesting
to investigate what difference can be seen between the dy-
namical structure factors obtained by these two methods.

However, it should be kept in mind that the electron-ion
mixture can be taken exactly as a quasi-one-component sys-
tem interacting only via apairwise interaction in the evalu-
ation of thepair correlation for simple liquid metals. When
we focus on the calculation of the ion-ion and electron-ion
RDF’s, the advantage of the present method against the
CP-MD method based on the usual pseudopotential theory
can be summarized as follows:~1! The present procedure is
capable of handling a large system size~;103 to 104 par-
ticles! in the MD simulation within the computational re-
sources available at present, helped by the good initial guess
with the VMHNC approximation for solving the QHNC
equation. ~2! In the QHNC-MD method, the many-body
forces and nonlinear effect in the electron screening are
taken into account automatically in the form of a pairwise
interaction in such a way that the nonlinear pseudopotential
is constructed in terms ofCeI(r ). ~3! By setting up an addi-
tional integral equation forCee(r ), our method can treat the
case where the jellium model for the electrons in a metal
breaks down, that is, where the exchange-correlation effect
begins to depend on the the ion configuration@4#. Therefore,
~4! our method is applicable to high density plasmas where

the ionic structure becomes significantly so different from a
free atom due to high compression that the usual pseudopo-
tential theory cannot be applied.

The QHNC-MD method is developed on the base of the
ion-electron model, where the bound electrons are assumed
to be clearly distinguished from the conduction electrons and
the ions are so rigid and so small that the ion-ion bare inter-
action is taken as a pure Coulombicv II (r )5(ZIe)

2/r .
Therefore our method is applicable only to a simple metallic
system. In a transition metal, for example, an ‘‘ion’’ cannot
be clearly defined since the bound electrons are not distinct
from the conduction electron, and the overlap of ‘‘ions’’ is
significant: many-body interactions becomes important. Our
method cannot be applied to such a case. Already, we have
proposed a method to treat nonsimple metals@5#; the RDF’s,
the ionic charge, and the muffin-tin potential are determined
by solving a single-center problem with a bare ion-ion inter-
action as an input, while the density of states, the bare ion-
ion interaction and the thermodynamic properties are to be
obtained as results of the multicenter problem with use of
output from the single-center problem.

The CP-MD method can produce the electron-ion RDF
and the electron-ion structureSeI(Q) is obtained from its
Fourier transform. Thus the charge distributionr(Q) of a
neutral pseudoatom can be calculated from Eq.~29! even in
the CP-MD simulation, since the relation~28! between
r(Q) andSeI(Q) is exact if a liquid metal can be treated as
a ion-electron mixture. Also, the electron-ion DCFCeI(Q) is
determined from Eq.~29! to give an effective ion-ion inter-
actionveff(r ) from Eq.~19!; these quantities must be consis-
tent to the ion-ion structure factorSII (Q), if the LFC
G(Q) in the electron-electron DCFCee(r ) is chosen exact
one in the electron-ion mixture. In this connection, there is a
point to notice regarding the CP-MD method that the
exchange-correlation effect of the valence electrons is treated
by the LDA approximation: the LFCG(Q) does not appear
in the CP-MD method. This consistency test in the CP-MD
method can be exemplified by applying it to liquid alkali
metals, which are typical examples of the electron-ion
model. At the same time, these quantities in the CP-MD
method can be compared with the results of the QHNC-MD
method, both methods providing first-principles calculations.
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